Tdrd6 Is Required for Spermiogenesis, Chromatoid Body Architecture, and Regulation of miRNA Expression
نویسندگان
چکیده
BACKGROUND Chromatoid bodies (CBs) are characteristic spermatid organelles, which were suggested to function in RNA storage and small RNA processing but whose functions remain largely unknown. CB components include Mili, Miwi, and Tudor domain proteins such as Tdrd6, whose contribution to CB structure and function is elusive. RESULTS We determined gametogenesis stage- and male-specific expression and localization of Tdrd6, identified a C-terminally truncated form as predominant after meiosis I, and demonstrated direct physical interaction of Tdrd6 with the CB components Mili and Miwi. Development from round into elongated spermatids is abrogated in Tdrd6(-/-) mice. Their round spermatids bear "ghost" CBs, whose architecture is greatly disrupted. Mael, Miwi, and Mvh do not localize to the Tdrd6-deficient CBs, but retrotransposons are not significantly activated. However, more than 50 miRNAs are more abundant in Tdrd6(-/-) testes, as are exemplary pre- and pri-miRNAs. CONCLUSION We conclude that Tdrd6 is essential for spermiogenesis, for CB structure, and for proper mature and precursor miRNA expression.
منابع مشابه
PAPOLB/TPAP regulates spermiogenesis independently of chromatoid body-associated factors
Mutant mice lacking a testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, exhibit spermiogenesis arrest and male infertility. However, the mechanism by which PAPOLB regulates spermiogenesis remains unclear. In this study, we examined the relationships between PAPOLB and other spermiogenesis regulators present in the chromatoid body (CB). The loss of PAPOLB had no impact either on the a...
متن کاملTudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis.
In the male germline in mammals, chromatoid bodies, a specialized assembly of cytoplasmic ribonucleoprotein (RNP), are structurally evident during meiosis and haploidgenesis, but their developmental origin and regulation remain elusive. The tudor domain containing proteins constitute a conserved class of chromatoid body components. We show that tudor domain containing 7 (Tdrd7), the deficiency ...
متن کاملTDRD6 mediates early steps of spliceosome maturation in primary spermatocytes
Tudor containing protein 6 (TDRD6) is a male germ line-specific protein essential for chromatoid body (ChB) structure, elongated spermatid development and male fertility. Here we show that in meiotic prophase I spermatocytes TDRD6 interacts with the key protein arginine methyl transferase PRMT5, which supports splicing. TDRD6 also associates with spliceosomal core protein SmB in the absence of ...
متن کاملTDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice
The Tudor domain-containing proteins (TDRDs) are an evolutionarily conserved family of proteins involved in germ cell development. We show here that in mice, TDRD5 is a novel component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Tdrd5-deficient males are sterile because...
متن کاملIncorporation of (3H)uridine by the chromatoid body during rat spermatogenesis
The in vitro incorporation of tritiated uridine into RNA by the spermatogenic cells of the rat has been analyzed by high-resolution autoradiography. Special attention has been focused on the unique cytoplasmic organelle, the chromatoid body. After a short labeling time (2 h), this organelle remains unlabeled in the vast majority of the early spermatids although the nuclei are labeled. When the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 19 شماره
صفحات -
تاریخ انتشار 2009